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I

In this paper, we give a unified treatment of the problem of approximating
a family of elements belonging to a space of real-valued functions
simultaneously by a single element from a specified approximating family.
Specifically, if F denotes a uniformly bounded subset of a linear vector space
X with norm II II, and V denotes a nonempty convex subset of X, we seek an
element Vo E V, designated a best simultaneous approximation (b.s.a.),
assuming it exists, satisfying

sup 111- voll = inf sup III- vii·
feF veV feF

(1)

For example, if X = qa, b], the space of continuous real functions defined
on [a, b] and endowed with the uniform norm (II gil = sUPXe[a.b11 g(x)1 for all
gEe [a, b]), F = {/1'/2} c X and V = P, the polynomials of degree not
greater than some fixed integer, then we seek Po E P such that

max{11/1 - Poll, 11/2 - Poll} = inf max{11/1 - pll, 11/2 - pll}·
peP

This problem has been studied in [6].

* The theme of this paper was first presented at the Symposium on Approximation Theory,
University of Texas, Austin, Texas in January 1976.
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The case of X = S[a, b], the space of bounded real functions defined on
[a, b] and endowed with the uniform norm, F a bounded, not necessarily
finite family in S[a, b] and Va linear subspace of C[a, b], has been studied
in [3].

The problem of approximating in the sense of (1) for a general normed
linear space X by elements of a closed convex subset, such as when convex
side constraints are imposed on a linear approximating family, was first
tackled in [8], by the method of subgradients. In particular, the results
obtained there relate to when F is a compact subset of X, while it would be
desirable to extend the setting to the less restrictive condition of F being
uniformly bounded in norm. This we do in Sections 2 to 4 by a direct
approach to the problem based on the Hahn-Banach theorem and
generalizations of concepts in [3].

In Sections 5 and 6, respectively, we derive from our unifying theory, the
linear unconstrained problem of simultaneous approximation of F when

(i) F consists of a bounded set in S[a, b], and

(ii) F consists of an upper semicontinuous real-valued functionf+ and
a lower semicontinuous function f -, with f + ;;;:f - pointwise over a com
pactum.

Conditions under which the existence of the b.s.a. is guaranteed, have been
given in [4, 7, 11].

2

Let X be a normed vector space and X* the real dual space of bounded
linear functionals on X. We let B * denote the unit norm ball on X* with
B * := {L E X*: II L II ~ I}. There exists a unique smallest topology of open
sets for X* generated by any nonempty set M c X such that all evaluation
mappings x: X* -+ R given by

x(L) == Lx for all x E M, are continuous on X*.

In the sequel we shall assume that X* is endowed with such a a(M, X*)
topology for some appropriate M c X, where M includes at least the set V.
The description of continuous or upper semicontinuous (u.s.c.) to any subset
of X* is understood to relate to the open sets of a(M, X*). For example,
g(L) defined on K c X*, is U.S.c. if for each real number r, {L E K: g(L) < r}
is an open set that belongs to a(M, X*). We note that when M = X, the
topology on X* is the weak * topology. Furthermore, since B* is weak *
compact and M c X, we may deduce that B * is compact in the a(M, X*)
topology.
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Now assume that K is a subset of B * satisfying

(1) K is (l(M, X*) compact.

(2) For every fE F and v E V, there exists a sequence {L} E K such
that SUPL eK L(f- v) = Ilf- v II·

We note, in particular, that by the Hahn-Banach Theorem there always
exists an L E B * such that L(f- v) = Ilf- v II. In conditions (1) and (2)
above, however, we do not impose on K that it must contain any such L.

We define the following functions on K. For each v E V, v(L) := Lv, and
UF(L) := sup/eF Lf Then for each v E V we have

sup Ilf- vii = sup sup [L(f - v)]
/eF /eF LeK

= sup sup [Lf-Lv]
LeK /eF

= sup [UF(L) - veL)].
LeK

Thus for Vo E V, sUP/eF IIf- voll = infl'eV sUP/eF Ilf- vii if and only if

sup [UF(L) - vo(L)] = inf sup [UF(L) - veL)].
LeK veV LeK

(2)

The problem of finding Vo E V which best approximates F in the sense of
(1) is thus the same as that of finding Vo E V which best approximates the
function UF(L) in the sense of (2). We may think of V as both a subset of X
and as a subset of the continuous real functions on K.

It turns out to be more convenient to characterize Vo in terms of the
"upper envelope" of UF(L) instead of UF(L) itself.

For each L E K, let N(L) denote the collection {O } of all open
neighborhoods in K of L. We may assume without loss of generality that
N(L) is a local base in K of L. Then for a bounded real-valued function g
defined on K, we define

g+ (L):= inf sup g(k),
DeN(L) keD

LEK.

Remark 1. The function g + (.) is u.s.c. on K.

Proof Let r be a given real number and L be an arbitrary member of K
satisfying g +(L) < r. By the definition of g +(L), there exists an 0 E N(L)
such that

sup g(k) <g+ (L) + (r - g+ (L))/2.
keD
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Since 0 is a neighborhood of every k E 0, it follows that g +(k) < r for all
k EO or, equivalently, 0 is contained in {L E K: g+ (L) < r}. Hence the
result.

We also note that since v is continuous on K, both v and -v are u.s.c. on
K.

Remark 2. There exists an L oE K such that

Proof. The proof follows from the fact that K is a(M, X*) compact and
g+(.) is u.s.c. (see e.g., [10, p.140]).

Remark 3. For each v E V and for each L E K

[geL) - veL)] + = g+ (L) - veL).

Proof. Let h > 0 and L oE K. Choose N" N 2 E N(L o) such that

(1) geL) - v(L)::;;; [g(Lo) - v(Lo)] + + h, for all LEN" and

(2) v(L) < v(Lo) + h, for all L E N 2 •

Then No := N, n N2 E N(L o) and for all L E No, both conditions (1) and (2)
are satisfied. Thus for all L E No,

g(L) < [g(L o) - v(Lo)] + + v(Lo) + 2h.

However, g+(Lo) ::;;; sup{ geL): L E No}. Hence g+(Lo) - v(Lo) ::;;;
[g(L o) - v(Lo)] +.

To show that the inequality can be reversed, let h >0 and N" N 2 E N(L o)
be chosen such that

(I') g(L)::;;;g+(Lo)+h, for allLEN" and

(2') -veL) < h - v(Lo), for all L E N 2 •

Then No = N, n N 2 E N(L o) and for all L E No, both conditions (I') and
(2') are satisfied. Thus for all L E No

We may take the supremum over all L E No of the left-hand side, and
preserve the inequality.

Hence

This completes the proof.
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Remark 4. sUPLeKg+(L)=sUPLeKg(L).

Proof Clearly SUPL eK g(L) ::;;; SUPL eK g +(L).
On the other hand, let L o E K be chosen, as in Remark 2, such that

g+(L o) = sUPLeK g+(L). For any h >0, let L E K be chosen such that
g(L»g+(Lo)-h. Then

We conclude that for each v E V, U;(L) - v(L) is u.s.c. and further that

sup [UF(L) - v(L)] = sup [UF(L) - v(L)] +
LeK LeK

= sup[U;(L)-v(L)].
LeK

At this point, we have shown that

sup Ilf- voll = inf sup Ilf- vii
feF veV feF

if and only if

sup[U;(L)-vo(L)] = inf SUp [U;(L)-v(L)].
LeK veV LeK

(3)

That is to say, the original problem of approximating the set F is the same as
that of approximating the u.s.c. function U; (L).

3

The theorems developed in this section will characterize Vo in terms of U;.

THEOREM 1. Let K be an arbitrary compact Hausdorff space, and g a
real-valued upper semicontinuous function defined on K. Let V be a convex
subset of the continuous real-valued functions on K such that

inf max[g(L) - v(L)] > -00.
veV LeK

Let VoE V. Then

E := max[g(L) - vo(L)] = inf max[g(L) - v(L)] (4)
LeK veV LeK

if and only iffor each v E V there exists an L E K such that
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(i) g(L) - v(L) = E, and

(ii) v(L)-vo(L)~O.

151

Proof The proof uses a standard argument and is included for
completeness. We show first that the conditions (i) and (ii) are necessary.
The proof is by contraposition.

Let S= {LEK:g(L)-vo(L)=E}. Since g(L)-vo(L) is u.s.c., S is
nonempty and closed in K. Suppose that (i) and (ii) are not necessary. Then
for some v E V

inf [v(L) - vo(L)] = 5> O.
LES

Let W be the set of all L E K satisfying v(L) - vo(L) >5/2. Then W is an
open set containing S.

If we take any t, 0 < t < 1, then for all LEW

g(L) - vo(L) - t(v - vo)(L) <E - ts/2.

Hence SUPLEW{g(L) - [vo(L) + t(v - vo)(L)]} ~E - ts/2 <E.
On the compact set K\W, g(L) - vo(L) is bounded away from E. Since

(v - vo)(L) is bounded on K\W, there exists to >0 such that for all t,
O~t~to,

sup {g(L)- [vo(L) + t(v-vo)(L)]} <E.
LEK\W

Thus for all t E (0, min{l, to})

sup {g(L) - [vo(L) + t(v - vo)(L)]} < E.
LEK

That is, (1 - t) Vo + tv E V is a better approximation in the sense of (4) than

vo'
The argument that (i) and (ii) are sufficient is straightforward and is

omitted. We note that we can replace g in Theorem 1 by U;, and this we do
in Sections 5 and 6. However, here we proceed to refine Theorem 1 by first
deriving a significant property of the function U;.

LEMMA 1. U; is a convex function on K.

Proof Let LI' L 2 E K and N1 be an open neighborhood in K of L 1 for
i= 1,2. For any k, ENI' k 2 EN2 and tE [0, 1], tN, + (l-t)k2 is an open
neighborhood of tk, + (1 - t) k 2 that is contained in tN, + (1 - t) N 2 • Hence
tN, + (1- t)N2 is an open neighborhood of tL, + (1- t)L 2 • Thus
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U;(tL t +(I-t)L2)= inf supUF(L)
OeN(ILI+(t-I)Lz) LeO

~ t SUp UF(k t ) + (1 - t) sup UF(k2 ).
k1eN, kzeNz

Taking the infimum over Nt E N(L t ) and N 2 E N(L 2) yields

Now for any set A, let ext(A) denote the set of extreme points of A. That
is, a E ext(A) if and only if a cannot be expressed as a strict convex
combination of any other points in A. We derive:

LEMMA 2. Let E:= maxLeK [U;(L) - vo(L)] and let A(vo) :=
{L E K: U;(L) - vo(L) = E}. Then ext(A(vo»= ext(K) nA(vo)'

Proof. We show that ext(A (vo»c ext(K) n A (vo) since inclusion the
other way follows by definition of ext(A(vo)).

Suppose LEA (vo) and L e ext(K). Then L = tL t + (1 - t) L 2 for some
L p L 2 EK and tE (0, 1). By Lemma 1,

However, U;(L/) - vo(L/) ~ E for i = 1,2 and so we must have equality
holding. Hence L/ E A(vo). Consequently, L e ext(A(vo» from which the
result follows.

THEOREM 2. Let VoE V and E = sUPfeF Ilf- voll. Then Vo is a b.s.a. if
and only iffor each v E V there exists an L E ext(K) such that

(1) U;(L) - vo(L) = E, and

(2) L(v - vo) ~ O.

Proof. As in [1, Lemma 2), we have that

min L(v - vo) ~ 0
LeA(vo)

if and only if min L(v - vol ~ O.
Leext(A(voH

Now apply this and Lemma 2 above and Theorem 1 yields Theorem 2.
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4
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In [8], the subset F was assumed to be norm-compact in X. Under this
assumption, Theorem 2 can be "improved." The following remarks are made
for this purpose.

Remark 5. If F is a norm-compact subset of X, and h > 0, then there
exists a finite number of elements of F, II ,...,fn such that for every IE F,
mini III- lill < h. Now let IE F and fj E {f1,...,lnl be chosen such that
III - fj II <h. Let L E K', an arbitrary nonempty subset of B *. Then

LI= L(f- fj) +Lfj";;; IlL IIIII - fjll +m~ LJ;,

<h +m!lx LJ;.,

Thus SUPteF LI- max/ LJ; <h and hence for any h >0

0";;; UF(L) - m!lx LJ; <h
I

for all L E K

which is the main observation of this remark.

Remark 6. If F is norm-compact, then UF(L) is continuous on any
nonempty subset K' of B*. Consequently, U:(L) = UF(L) independently of
the subset K used to define U: (L ).

Proof. Let L o E K' and h > O. We show that there exists a neighborhood
No of L o, in K', such that IUF(L) - UF(Lo)1 <h for all L E No. Let/"".,fn
be elements of F such that for all IE F, min/III - J;II <h13. Let

N o := {L E K': ILJ; -LoJ;1 < h13, 1";;; i";;; nl.

We can show that Imax/LJ; - max/LoJ;l <hl3 for L E No. For let
max/ LJ; = Lfj and maxi LoJ; = Lolk. Then

= Lfj - Lofj + [Lofj - LolkJ

,,;;; LJj - Lofj < h13,

where we have used the fact that the term in brackets is non-positive. On the
other hand,

m~x LJ; - m~x Loft = [Lfj - Llk] +Llk - Lolk

~ Lfk - Lofk > -hI3,
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where we have used the fact that the term in brackets is nonnegative. Thus if
LENo,

< hl3 + hl3 +hl3 = h,

where we have used the main observation of Remark 5.

Remark 7. If F is norm-compact, then for every L E B* there exists
fEF such that UF(L)=Lf

The proof is a straightforward consequence of L being a norm-continuous
functional.

THEOREM 3. Let F be a norm-compact subset of X and V a convex
subset of X. If VoE V and E = SUPteF Ilf- voll then Vo is a b.s.a. to F if and
only iffor each v E V there exists an L E ext(B *) and an f E F such that

(1) L(J- vo) = E, and

(2) L(v - vo) ~ o.
Proof Let K = B * and L E K. Then through Remark 6, we can replace

U:(L) in Theorem 2 with UF(L), and through Remark 7, we can replace
UF(L) with Lffor somefE F.

Some specific applications of Theorem 3 are considered in [8]. However,
for the wider implications of a generalized "alternation" theorem, de la
Vallee-Poussin theorem and strong unicity result, see [1, Theorem 4.3 et
seq.].

5

For Q a compact Hausdorff space with the usual topology of open sets,
we take X = S(Q), the space of bounded real-valued functions together with
the uniform norm, and V = P, a linear subspace of C(Q) c S(Q). F shall be
a bounded subset of S(Q). We endow the dual space [S(Q)]* with the
topology of open sets generated by M = C(Q). We define, using open
neighborhoods in Q,

and qEQ
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where the superscript "+" has been dermed above and the superscript "-" is
defined as follows: For h(q) a bounded real-valued function on Q,

h-(q):= sup inf h(q'),
NeN(q) q'eN

qEQ,

where N(q) denotes the collection {N} of all open neighborhoods of q in Q.
We observe that -h-(q) = (-h(q»+, q E Q.

Now for each q E Q, we define the point evaluation functional L q by
Lqx == x(q) for all x E SeQ). We let H+(Q):= {Lq: q E Q}, H-(Q):=
{-Lq: q E Q} and H°(Q) := H+(Q) U H-(Q). In the sequel we assume that
K = H°(Q). Note that conditions (1) and (2) of Section 2 defining K are met.

Remark 8. ext(B*)cHO(Q)cB*. The proof is as given in [5, V.8.6,
p. 441] with minor modification.

Now for 0 = +, - or 0, and q an arbitrary element of Q, let NU(L q ) be the
collection {NU} of all basic neighborhoods of L q in HU(Q). Recall that N U

will be a set of the form {L E HU(Q): I(L - Lq)xl <e for x E fJ; fJ some
finite subset of M and e > OJ.

Remark 9.

sup inf UF(L) = F-(q).
N-eN-(L q) LeN-

Proof

qEQ.

qEQ.

For 0 = + or -, the mapping q ~ oLq is a one-to-one homeomorphism of Q
onto HU(Q), which is also o(M, X) compact, as shown in [5, V.8.7, p. 4421.
Hence the result.

Remark 10.

U;(Lq)=F+(q),

U;(-L q ) = -F-(q),

qEQ.

qEQ.

Proof First take a q E Q, and let BO E N°(Lq ). Then there exists a
corresponding basic neighborhood B + E N+ (L q ) with L q E B + C BO. Now
suppose B + E N+ (Lq ) and let BO be the corresponding basic neighborhood
in N°(L q ). Let h > 0 and define fo E C(Q) by fo == h on Q. Define B' :=
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{L E HO(Q): ILJo - Lqfol <h} E N°(Lq). Since I-LqIo - Lqfol = 2h > h,
for all q' E Q, we have that -Lq,eB', q' E Q. Hence B' c H+(Q). Now set
NO = B' (IBo. N° E NO(Lq) and L q E NO c B +. It may be that N° = {Lq}.
Thus for each q E Q and each N+ E N+(Lq), Uj(Lq)~ SUPLEN+ UF(L).
Hence

From Remark 9, Uj (L q ) = F+ (q) and similarly for the second result.
Theorem 1 now becomes:

THEOREM 4. Let Q be a compact Hausdorff space, F a bounded subset
of S(Q) and P a subspace ofC(Q). Let Po E P and E = SUP!EF Ilf- Poll. Then
Po is a b.s.a. if and only if for each pEP there exists a q E Q such that
either

(i) F+ (q) - Po(q) = E and p(q) ~ 0, or

(ii) Po(q)-F-(q)=E andp(q)~O.

A version of this theorem is given in [4].

6

We now show how the following very special problem, which has
appeared in [6] and [9] in connection with simultaneous approximation
theory, can be treated within our framework. With X, P and Q defined as in
Section 5, let f+(q) and f-(q) be, respectively, bounded upper and lower
semicontinuous real-valued functions on Q. We seek to characterize Po E P
which minimizes the expression

max{max[f+ (q) - p(q)], max [p(q) - f-(q)]}.qEQ qEQ

Remark 11. Iff +(q) ~ f - (q), q E Q, then the expression we are seeking
to minimize is equivalent to

max{max If+ (q) - p(q)l, max If-(q) - p(q)I}·qEQ qEQ

Note that this equivalence can be used to simplify the expression in
[3, Theorem 21.



APPROXIMATION OF BOUNDED SETS 157

Remark 12. With [S(Q)]*, B* and HO(Q) defined as in Section 5, and
K = H°(Q) we define U on HO(Q) by

qEQ.

Then U is an upper semicontinuous function on H°(Q).

Proof As in Remark 10,

But the center term, as in Remark 9, is f +(q).
Hence

and similarly

qEQ.

Thus U+ = U on H°(Q). Hence the result.

Remark 13.

max{max[f+ (q) - p(q)], max [p(q) - f-(q)]}
qeQ qeQ

= max{max[U(Lq) - p(Lq)], max [U(-Lq) - p(-Lq)Jl
qeQ qeQ

= max [U(L) - peL)].
LeH°(Q)

Theorem 1 now takes the following form:

THEOREM 6. Let Q be a compact Hausdorff space, f + and -f - be two
bounded upper semicontinuous functions on Q and P a linear subspace of
CCQ) with Po E P. Then

E := max{max[f+ (q) - Po(q)], max [Po(q) -f-(q)]}
qeQ qeQ

= inf max{max[f+(q) - p(q)], max [p(q) -f-(q)]}
peP qeQ qeQ

if and only iffor each pEP there exists q E Q such that either

(i) f+(q)-Po(q)=E andp(q)~O; or

(ii) Po(q)-f-(q)=E andp(q)~O.
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