Approximation of Bounded Sets*

J. H. FREILICH

Department of Mathematics, Statistics and Computing, City of London Polytechnic, 31 Jewry Street, London EC3 N2EY, England

AND

H. W. McLaughlin

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181

Communicated by E. W. Cheney

Received December 22, 1980

1

In this paper, we give a unified treatment of the problem of approximating a family of elements belonging to a space of real-valued functions simultaneously by a single element from a specified approximating family. Specifically, if F denotes a uniformly bounded subset of a linear vector space X with norm || ||, and V denotes a nonempty convex subset of X, we seek an element $v_0 \in V$, designated a best simultaneous approximation (b.s.a.), assuming it exists, satisfying

$$\sup_{f \in F} \|f - v_0\| = \inf_{v \in V} \sup_{f \in F} \|f - v\|.$$
(1)

For example, if X = C[a, b], the space of continuous real functions defined on [a, b] and endowed with the uniform norm $(||g|| = \sup_{x \in [a,b]} |g(x)|$ for all $g \in C[a, b]$), $F = \{f_1, f_2\} \subset X$ and V = P, the polynomials of degree not greater than some fixed integer, then we seek $p_0 \in P$ such that

$$\max\{\|f_1 - p_0\|, \|f_2 - p_0\|\} = \inf_{p \in P} \max\{\|f_1 - p\|, \|f_2 - p\|\}.$$

This problem has been studied in [6].

* The theme of this paper was first presented at the Symposium on Approximation Theory, University of Texas, Austin, Texas in January 1976.

The case of X = S[a, b], the space of bounded real functions defined on [a, b] and endowed with the uniform norm, F a bounded, not necessarily finite family in S[a, b] and V a linear subspace of C[a, b], has been studied in [3].

The problem of approximating in the sense of (1) for a general normed linear space X by elements of a closed convex subset, such as when convex side constraints are imposed on a linear approximating family, was first tackled in [8], by the method of subgradients. In particular, the results obtained there relate to when F is a compact subset of X, while it would be desirable to extend the setting to the less restrictive condition of F being uniformly bounded in norm. This we do in Sections 2 to 4 by a direct approach to the problem based on the Hahn-Banach theorem and generalizations of concepts in [3].

In Sections 5 and 6, respectively, we derive from our unifying theory, the linear unconstrained problem of simultaneous approximation of F when

(i) F consists of a bounded set in S[a, b], and

(ii) F consists of an upper semicontinuous real-valued function f^+ and a lower semicontinuous function f^- , with $f^+ \ge f^-$ pointwise over a compactum.

Conditions under which the existence of the b.s.a. is guaranteed, have been given in [4, 7, 11].

2

Let X be a normed vector space and X^* the real dual space of bounded linear functionals on X. We let B^* denote the unit norm ball on X^* with $B^* := \{L \in X^* : ||L|| \le 1\}$. There exists a unique smallest topology of open sets for X^* generated by any nonempty set $M \subset X$ such that all evaluation mappings $\hat{x} : X^* \to R$ given by

 $\hat{x}(L) \equiv Lx$ for all $x \in M$, are continuous on X^* .

In the sequel we shall assume that X^* is endowed with such a $\sigma(M, X^*)$ topology for some appropriate $M \subset X$, where M includes at least the set V. The description of continuous or upper semicontinuous (u.s.c.) to any subset of X^* is understood to relate to the open sets of $\sigma(M, X^*)$. For example, g(L) defined on $K \subset X^*$, is u.s.c. if for each real number r, $\{L \in K: g(L) < r\}$ is an open set that belongs to $\sigma(M, X^*)$. We note that when M = X, the topology on X^* is the weak * topology. Furthermore, since B^* is weak * compact and $M \subset X$, we may deduce that B^* is compact in the $\sigma(M, X^*)$ topology.

Now assume that K is a subset of B^* satisfying

(1) K is $\sigma(M, X^*)$ compact.

(2) For every $f \in F$ and $v \in V$, there exists a sequence $\{L\} \in K$ such that $\sup_{L \in K} L(f-v) = ||f-v||$.

We note, in particular, that by the Hahn-Banach Theorem there always exists an $L \in B^*$ such that L(f-v) = ||f-v||. In conditions (1) and (2) above, however, we do not impose on K that it must contain any such L.

We define the following functions on K. For each $v \in V$, v(L) := Lv, and $U_F(L) := \sup_{f \in F} Lf$. Then for each $v \in V$ we have

$$\sup_{f \in F} ||f - v|| = \sup_{f \in F} \sup_{L \in K} [L(f - v)]$$
$$= \sup_{L \in K} \sup_{f \in F} [Lf - Lv]$$
$$= \sup_{L \in K} [U_F(L) - v(L)].$$

Thus for $v_0 \in V$, $\sup_{f \in F} ||f - v_0|| = \inf_{v \in V} \sup_{f \in F} ||f - v||$ if and only if

$$\sup_{L \in K} [U_F(L) - v_0(L)] = \inf_{v \in V} \sup_{L \in K} [U_F(L) - v(L)].$$
(2)

The problem of finding $v_0 \in V$ which best approximates F in the sense of (1) is thus the same as that of finding $v_0 \in V$ which best approximates the function $U_F(L)$ in the sense of (2). We may think of V as both a subset of X and as a subset of the continuous real functions on K.

It turns out to be more convenient to characterize v_0 in terms of the "upper envelope" of $U_F(L)$ instead of $U_F(L)$ itself.

For each $L \in K$, let N(L) denote the collection $\{O\}$ of all open neighborhoods in K of L. We may assume without loss of generality that N(L) is a local base in K of L. Then for a bounded real-valued function g defined on K, we define

$$g^+(L) := \inf_{\substack{O \in N(L) \ k \in O}} \sup_{k \in O} g(k), \qquad L \in K.$$

Remark 1. The function $g^+(\cdot)$ is u.s.c. on K.

Proof. Let r be a given real number and L be an arbitrary member of K satisfying $g^+(L) < r$. By the definition of $g^+(L)$, there exists an $O \in N(L)$ such that

$$\sup_{k \in O} g(k) < g^+(L) + (r - g^+(L))/2.$$

Since O is a neighborhood of every $k \in O$, it follows that $g^+(k) < r$ for all $k \in O$ or, equivalently, O is contained in $\{L \in K : g^+(L) < r\}$. Hence the result.

We also note that since v is continuous on K, both v and -v are u.s.c. on K.

Remark 2. There exists an $L_0 \in K$ such that

$$g^+(L_0) = \sup_{L \in K} g^+(L).$$

Proof. The proof follows from the fact that K is $\sigma(M, X^*)$ compact and $g^+(\cdot)$ is u.s.c. (see e.g., [10, p. 140]).

Remark 3. For each $v \in V$ and for each $L \in K$

$$[g(L) - v(L)]^{+} = g^{+}(L) - v(L).$$

Proof. Let h > 0 and $L_0 \in K$. Choose $N_1, N_2 \in N(L_0)$ such that

- (1) $g(L) v(L) \leq [g(L_0) v(L_0)]^+ + h$, for all $L \in N_1$, and
- (2) $v(L) < v(L_0) + h$, for all $L \in N_2$.

Then $N_0 := N_1 \cap N_2 \in N(L_0)$ and for all $L \in N_0$, both conditions (1) and (2) are satisfied. Thus for all $L \in N_0$,

$$g(L) < [g(L_0) - v(L_0)]^+ + v(L_0) + 2h.$$

However, $g^+(L_0) \leq \sup\{g(L): L \in N_0\}$. Hence $g^+(L_0) - v(L_0) \leq [g(L_0) - v(L_0)]^+$.

To show that the inequality can be reversed, let h > 0 and $N_1, N_2 \in N(L_0)$ be chosen such that

- (1') $g(L) \leq g^+(L_0) + h$, for all $L \in N_1$, and
- (2') $-v(L) < h v(L_0)$, for all $L \in N_2$.

Then $N_0 = N_1 \cap N_2 \in N(L_0)$ and for all $L \in N_0$, both conditions (1') and (2') are satisfied. Thus for all $L \in N_0$

$$g(L) - v(L) < g^+(L_0) - v(L_0) + 2h.$$

We may take the supremum over all $L \in N_0$ of the left-hand side, and preserve the inequality.

Hence

$$[g(L_0) - v(L_0)]^+ \leq g^+(L_0) - v(L_0).$$

This completes the proof.

Remark 4. $\sup_{L \in K} g^+(L) = \sup_{L \in K} g(L)$.

Proof. Clearly $\sup_{L \in K} g(L) \leq \sup_{L \in K} g^+(L)$.

On the other hand, let $L_0 \in K$ be chosen, as in Remark 2, such that $g^+(L_0) = \sup_{L \in K} g^+(L)$. For any h > 0, let $L \in K$ be chosen such that $g(L) > g^+(L_0) - h$. Then

$$\sup_{L \in K} g(L) \ge g^+(L_0) = \sup_{L \in K} g^+(L).$$

We conclude that for each $v \in V$, $U_F^+(L) - v(L)$ is u.s.c. and further that

$$\sup_{L \in K} [U_F(L) - v(L)] = \sup_{L \in K} [U_F(L) - v(L)]^+$$
$$= \sup_{L \in K} [U_F^+(L) - v(L)].$$

At this point, we have shown that

$$\sup_{f \in F} \|f - v_0\| = \inf_{v \in V} \sup_{f \in F} \|f - v\|$$

if and only if

$$\sup_{L \in K} [U_F^+(L) - v_0(L)] = \inf_{v \in V} \sup_{L \in K} [U_F^+(L) - v(L)].$$
(3)

That is to say, the original problem of approximating the set F is the same as that of approximating the u.s.c. function $U_F^+(L)$.

3

The theorems developed in this section will characterize v_0 in terms of U_F^+ .

THEOREM 1. Let K be an arbitrary compact Hausdorff space, and g a real-valued upper semicontinuous function defined on K. Let V be a convex subset of the continuous real-valued functions on K such that

$$\inf_{v\in V} \max_{L\in K} [g(L) - v(L)] > -\infty.$$

Let $v_0 \in V$. Then

$$E := \max_{L \in K} [g(L) - v_0(L)] = \inf_{v \in V} \max_{L \in K} [g(L) - v(L)]$$
(4)

if and only if for each $v \in V$ there exists an $L \in K$ such that

(i)
$$g(L) - v(L) = E$$
, and

(ii)
$$v(L) - v_0(L) \leq 0.$$

Proof. The proof uses a standard argument and is included for completeness. We show first that the conditions (i) and (ii) are necessary. The proof is by contraposition.

Let $S = \{L \in K : g(L) - v_0(L) = E\}$. Since $g(L) - v_0(L)$ is u.s.c., S is nonempty and closed in K. Suppose that (i) and (ii) are not necessary. Then for some $v \in V$

$$\inf_{L\in S} \left[v(L) - v_0(L) \right] = s > 0.$$

Let W be the set of all $L \in K$ satisfying $v(L) - v_0(L) > s/2$. Then W is an open set containing S.

If we take any t, 0 < t < 1, then for all $L \in W$

$$g(L) - v_0(L) - t(v - v_0)(L) < E - ts/2.$$

Hence $\sup_{L \in W} \{ g(L) - [v_0(L) + t(v - v_0)(L)] \} \leq E - ts/2 < E.$

On the compact set $K \setminus W$, $g(L) - v_0(L)$ is bounded away from E. Since $(v - v_0)(L)$ is bounded on $K \setminus W$, there exists $t_0 > 0$ such that for all t, $0 \le t \le t_0$,

$$\sup_{L \in K \setminus W} \{ g(L) - [v_0(L) + t(v - v_0)(L)] \} < E.$$

Thus for all $t \in (0, \min\{1, t_0\})$

$$\sup_{L \in K} \{ g(L) - [v_0(L) + t(v - v_0)(L)] \} < E.$$

That is, $(1-t)v_0 + tv \in V$ is a better approximation in the sense of (4) than v_0 .

The argument that (i) and (ii) are sufficient is straightforward and is omitted. We note that we can replace g in Theorem 1 by U_F^+ , and this we do in Sections 5 and 6. However, here we proceed to refine Theorem 1 by first deriving a significant property of the function U_F^+ .

LEMMA 1. U_F^+ is a convex function on K.

Proof. Let $L_1, L_2 \in K$ and N_i be an open neighborhood in K of L_i for i = 1, 2. For any $k_1 \in N_1, k_2 \in N_2$ and $t \in [0, 1]$, $tN_1 + (1 - t)k_2$ is an open neighborhood of $tk_1 + (1 - t)k_2$ that is contained in $tN_1 + (1 - t)N_2$. Hence $tN_1 + (1 - t)N_2$ is an open neighborhood of $tL_1 + (1 - t)L_2$. Thus

$$U_{F}^{+}(tL_{1} + (1 - t)L_{2}) = \inf_{\substack{O \in N(tL_{1} + (1 - t)L_{2}) \ L \in O}} \sup_{\substack{L \in O}} U_{F}(L)$$

$$\leq \sup_{\substack{L \in tN_{1} + (1 - t)N_{2}}} U_{F}(L)$$

$$= \sup_{\substack{k_{1} \in N_{1}, k_{2} \in N_{2}}} U_{F}(tk_{1} + (1 - t)k_{2})$$

$$\leq t \sup_{\substack{k_{1} \in N_{1}}} U_{F}(k_{1}) + (1 - t) \sup_{\substack{k_{2} \in N_{2}}} U_{F}(k_{2}).$$

Taking the infimum over $N_1 \in N(L_1)$ and $N_2 \in N(L_2)$ yields

$$U_F^+(tL_1 + (1-t)L_2) \leq tU_F^+(L_1) + (1-t)U_F^+(L_2).$$

Now for any set A, let ext(A) denote the set of extreme points of A. That is, $a \in ext(A)$ if and only if a cannot be expressed as a strict convex combination of any other points in A. We derive:

LEMMA 2. Let $E := \max_{L \in K} [U_F^+(L) - v_0(L)]$ and let $A(v_0) := \{L \in K: U_F^+(L) - v_0(L) = E\}$. Then $ext(A(v_0)) = ext(K) \cap A(v_0)$.

Proof. We show that $ext(A(v_0)) \subset ext(K) \cap A(v_0)$ since inclusion the other way follows by definition of $ext(A(v_0))$.

Suppose $L \in A(v_0)$ and $L \notin ext(K)$. Then $L = tL_1 + (1-t)L_2$ for some $L_1, L_2 \in K$ and $t \in (0, 1)$. By Lemma 1,

$$E = U_F^+(L) - v_0(L) \leq t [U_F^+(L_1) - v_0(L_1)] + (1-t) [U_F^+(L_2) - v_0(L_2)].$$

However, $U_F^+(L_i) - v_0(L_i) \leq E$ for i = 1, 2 and so we must have equality holding. Hence $L_i \in A(v_0)$. Consequently, $L \notin \text{ext}(A(v_0))$ from which the result follows.

THEOREM 2. Let $v_0 \in V$ and $E = \sup_{f \in F} ||f - v_0||$. Then v_0 is a b.s.a. if and only if for each $v \in V$ there exists an $L \in ext(K)$ such that

(1) $U_{F}^{+}(L) - v_{0}(L) = E$, and

$$(2) \quad L(v-v_0) \leq 0.$$

Proof. As in [1, Lemma 2], we have that

$$\min_{L \in \mathcal{A}(v_0)} L(v-v_0) \leqslant 0 \qquad \text{if and only if} \quad \min_{L \in \mathsf{ext}(\mathcal{A}(v_0))} L(v-v_0) \leqslant 0.$$

Now apply this and Lemma 2 above and Theorem 1 yields Theorem 2.

In [8], the subset F was assumed to be norm-compact in X. Under this assumption, Theorem 2 can be "improved." The following remarks are made for this purpose.

Remark 5. If F is a norm-compact subset of X, and h > 0, then there exists a finite number of elements of F, $f_1, ..., f_n$ such that for every $f \in F$, $\min_i ||f - f_i|| < h$. Now let $f \in F$ and $f_j \in \{f_1, ..., f_n\}$ be chosen such that $||f - f_j|| < h$. Let $L \in K'$, an arbitrary nonempty subset of B^* . Then

$$Lf = L(f - f_j) + Lf_j \leq ||L|| ||f - f_j|| + \max_i Lf_i$$

< $h + \max_i Lf_i$.

Thus $\sup_{i \in F} Lf - \max_i Lf_i < h$ and hence for any h > 0

$$0 \leq U_F(L) - \max_i Lf_i < h \qquad \text{for all } L \in K$$

which is the main observation of this remark.

Remark 6. If F is norm-compact, then $U_F(L)$ is continuous on any nonempty subset K' of B^* . Consequently, $U_F^+(L) = U_F(L)$ independently of the subset K used to define $U_F^+(L)$.

Proof. Let $L_0 \in K'$ and h > 0. We show that there exists a neighborhood N_0 of L_0 , in K', such that $|U_F(L) - U_F(L_0)| < h$ for all $L \in N_0$. Let $f_1, ..., f_n$ be elements of F such that for all $f \in F$, min_i $||f - f_i|| < h/3$. Let

$$N_0 := \{ L \in K' : |Lf_i - L_0 f_i| < h/3, 1 \le i \le n \}.$$

We can show that $|\max_i Lf_i - \max_i L_0f_i| < h/3$ for $L \in N_0$. For let $\max_i Lf_i = Lf_i$ and $\max_i L_0f_i = L_0f_k$. Then

$$\max_{i} Lf_{i} - \max_{i} L_{0}f_{i} = Lf_{j} - L_{0}f_{k}$$
$$= Lf_{j} - L_{0}f_{j} + [L_{0}f_{j} - L_{0}f_{k}]$$
$$\leq Lf_{i} - L_{0}f_{i} < h/3,$$

where we have used the fact that the term in brackets is non-positive. On the other hand,

$$\max_{i} Lf_{i} - \max_{i} L_{0}f_{i} = [Lf_{j} - Lf_{k}] + Lf_{k} - L_{0}f_{k}$$
$$\geq Lf_{k} - L_{0}f_{k} > -h/3,$$

where we have used the fact that the term in brackets is nonnegative. Thus if $L \in N_0$,

$$|U_F(L) - U_F(L_0)| \le |U_F(L) - \max_i Lf_i| + |\max_i Lf_i - \max_i L_0f_i| + |\max_i L_0f_i - U_F(L_0)| < h/3 + h/3 + h/3 = h,$$

where we have used the main observation of Remark 5.

Remark 7. If F is norm-compact, then for every $L \in B^*$ there exists $f \in F$ such that $U_F(L) = Lf$.

The proof is a straightforward consequence of L being a norm-continuous functional.

THEOREM 3. Let F be a norm-compact subset of X and V a convex subset of X. If $v_0 \in V$ and $E = \sup_{f \in F} ||f - v_0||$ then v_0 is a b.s.a. to F if and only if for each $v \in V$ there exists an $L \in ext(B^*)$ and an $f \in F$ such that

(1)
$$L(f - v_0) = E$$
, and

(2)
$$L(v-v_0) \leq 0.$$

Proof. Let $K = B^*$ and $L \in K$. Then through Remark 6, we can replace $U_F^+(L)$ in Theorem 2 with $U_F(L)$, and through Remark 7, we can replace $U_F(L)$ with Lf for some $f \in F$.

Some specific applications of Theorem 3 are considered in [8]. However, for the wider implications of a generalized "alternation" theorem, de la Vallee-Poussin theorem and strong unicity result, see [1, Theorem 4.3 et seq.].

5

For Q a compact Hausdorff space with the usual topology of open sets, we take X = S(Q), the space of bounded real-valued functions together with the uniform norm, and V = P, a linear subspace of $C(Q) \subset S(Q)$. F shall be a bounded subset of S(Q). We endow the dual space $[S(Q)]^*$ with the topology of open sets generated by M = C(Q). We define, using open neighborhoods in Q,

$$F^+(q) := (\sup_{f \in F} f(q))^+$$
 and $F^-(q) := (\inf_{f \in F} f(q))^-$, $q \in Q$

where the superscript "+" has been defined above and the superscript "-" is defined as follows: For h(q) a bounded real-valued function on Q,

$$h^-(q) := \sup_{N \in N(q)} \inf_{q' \in N} h(q'), \qquad q \in Q,$$

where N(q) denotes the collection $\{N\}$ of all open neighborhoods of q in Q. We observe that $-h^{-}(q) = (-h(q))^{+}$, $q \in Q$.

Now for each $q \in Q$, we define the point evaluation functional L_q by $L_q x \equiv x(q)$ for all $x \in S(Q)$. We let $H^+(Q) := \{L_q; q \in Q\}$, $H^-(Q) := \{-L_q; q \in Q\}$ and $H^0(Q) := H^+(Q) \cup H^-(Q)$. In the sequel we assume that $K = H^0(Q)$. Note that conditions (1) and (2) of Section 2 defining K are met.

Remark 8. $ext(B^*) \subset H^0(Q) \subset B^*$. The proof is as given in [5, V.8.6, p. 441] with minor modification.

Now for $\sigma = +, -$ or 0, and q an arbitrary element of Q, let $N^{\sigma}(L_q)$ be the collection $\{N^{\sigma}\}$ of all basic neighborhoods of L_q in $H^{\sigma}(Q)$. Recall that N^{σ} will be a set of the form $\{L \in H^{\sigma}(Q): |(L - L_q)x| < \varepsilon$ for $x \in \theta$; θ some finite subset of M and $\varepsilon > 0\}$.

Remark 9.

$$\inf_{\substack{N^+\in N^+(L_q)}} \sup_{\substack{L\in N^+}} U_F(L) = F^+(q),$$

$$\sup_{\substack{N^-\in N^-(L_q)}} \inf_{\substack{L\in N^-}} U_F(L) = F^-(q).$$

Proof.

$$U_F(L_q) = \sup_{f \in F} L_q f = \sup_{f \in F} f(q), \qquad q \in Q.$$
$$U_F(-L_q) = \sup_{f \in F} -L_q f = -\inf_{f \in F} L_q f = -\inf_{f \in F} f(q), \qquad q \in Q.$$

For $\sigma = +$ or -, the mapping $q \rightarrow \sigma L_q$ is a one-to-one homeomorphism of Q onto $H^{\sigma}(Q)$, which is also $\sigma(M, X)$ compact, as shown in [5, V.8.7, p. 442]. Hence the result.

Remark 10.

$$U_F^+(L_q) = F^+(q), \qquad q \in Q.$$

 $U_F^+(-L_q) = -F^-(q), \qquad q \in Q.$

Proof. First take a $q \in Q$, and let $B^0 \in N^0(L_q)$. Then there exists a corresponding basic neighborhood $B^+ \in N^+(L_q)$ with $L_q \in B^+ \subset B^0$. Now suppose $B^+ \in N^+(L_q)$ and let B^0 be the corresponding basic neighborhood in $N^0(L_q)$. Let h > 0 and define $f_0 \in C(Q)$ by $f_0 \equiv h$ on Q. Define B' :=

 $\begin{array}{l} \{L \in H^0(Q) \colon |Lf_0 - L_q f_0| < h\} \in N^0(L_q). \quad \text{Since} \quad |-L_{q'}f_0 - L_q f_0| = 2h > h, \\ \text{for all } q' \in Q, \text{ we have that } -L_{q'} \notin B', \ q' \in Q. \text{ Hence } B' \subset H^+(Q). \text{ Now set} \\ N^0 = B' \cap B^0. \ N^0 \in N^0(L_q) \text{ and } L_q \in N^0 \subset B^+. \text{ It may be that } N^0 = \{L_q\}. \\ \text{Thus for each } q \in Q \text{ and each } N^+ \in N^+(L_q), \ U_F^+(L_q) \leqslant \sup_{L \in N^+} U_F(L). \\ \text{Hence} \end{array}$

$$U_F^+(L_q) \leqslant \inf_{\substack{N^+ \in N^+(L_q)}} \sup_{\substack{L \in N^+}} U_F(L)$$
$$\leqslant \inf_{\substack{N^0 \in N^0(L_q)}} \sup_{\substack{L \in N^0}} U_F(L) = U_F^+(L_q).$$

From Remark 9, $U_F^+(L_q) = F^+(q)$ and similarly for the second result. Theorem 1 now becomes:

THEOREM 4. Let Q be a compact Hausdorff space, F a bounded subset of S(Q) and P a subspace of C(Q). Let $p_0 \in P$ and $E = \sup_{f \in F} ||f - p_0||$. Then p_0 is a b.s.a. if and only if for each $p \in P$ there exists a $q \in Q$ such that either

(i)
$$F^+(q) - p_0(q) = E \text{ and } p(q) \leq 0, \text{ or }$$

(ii)
$$p_0(q) - F^-(q) = E \text{ and } p(q) \ge 0.$$

A version of this theorem is given in [4].

6

We now show how the following very special problem, which has appeared in [6] and [9] in connection with simultaneous approximation theory, can be treated within our framework. With X, P and Q defined as in Section 5, let $f^+(q)$ and $f^-(q)$ be, respectively, bounded upper and lower semicontinuous real-valued functions on Q. We seek to characterize $p_0 \in P$ which minimizes the expression

$$\max\{\max_{q\in Q} [f^+(q) - p(q)], \max_{q\in Q} [p(q) - f^-(q)]\}.$$

Remark 11. If $f^+(q) \ge f^-(q)$, $q \in Q$, then the expression we are seeking to minimize is equivalent to

$$\max\{\max_{q\in Q} |f^{+}(q) - p(q)|, \max_{q\in Q} |f^{-}(q) - p(q)|\}.$$

Note that this equivalence can be used to simplify the expression in [3, Theorem 2].

Remark 12. With $[S(Q)]^*$, B^* and $H^0(Q)$ defined as in Section 5, and $K = H^0(Q)$ we define U on $H^0(Q)$ by

$$U(L_q) = f^+(q);$$
 $U(-L_q) = -f^-(q),$ $q \in Q.$

Then U is an upper semicontinuous function on $H^0(Q)$.

Proof. As in Remark 10,

$$U^+(L_q) \leqslant \inf_{N^+ \in N^+(L_q)} \sup_{L \in N^+} U(L) \leqslant U^+(L_q).$$

But the center term, as in Remark 9, is $f^+(q)$. Hence

$$U^+(L_q) = U(L_q), \qquad q \in Q$$

and similarly

$$U^+(-L_q) = U(-L_q), \qquad q \in Q.$$

Thus $U^+ = U$ on $H^0(Q)$. Hence the result.

Remark 13.

$$\max\{\max_{q \in Q} [f^{+}(q) - p(q)], \max_{q \in Q} [p(q) - f^{-}(q)]\}$$

= $\max\{\max_{q \in Q} [U(L_q) - p(L_q)], \max_{q \in Q} [U(-L_q) - p(-L_q)]\}$
= $\max_{L \in H^0(Q)} [U(L) - p(L)].$

Theorem 1 now takes the following form:

THEOREM 6. Let Q be a compact Hausdorff space, f^+ and $-f^-$ be two bounded upper semicontinuous functions on Q and P a linear subspace of C(Q) with $p_0 \in P$. Then

$$E := \max\{\max_{q \in Q} [f^+(q) - p_0(q)], \max_{q \in Q} [p_0(q) - f^-(q)]\}$$

=
$$\inf_{p \in P} \max\{\max_{q \in Q} [f^+(q) - p(q)], \max_{q \in Q} [p(q) - f^-(q)]\}$$

if and only if for each $p \in P$ there exists $q \in Q$ such that either

(i)
$$f^+(q) - p_0(q) = E$$
 and $p(q) \le 0$; or

(ii) $p_0(q) - f^-(q) = E$ and $p(q) \ge 0$.

References

- 1. D. A. AULT, F. R. DEUTSCH, P. D. MORRIS, AND J. E. OLSON, Interpolating subspaces in approximation theory, J. Approx. Theory 3 (1970), 164-182.
- 2. B. BROSOWSKI, Nichtlineare Approximation in Normierten Vektorraumen, *in* "Abstract Spaces and Approximation," ISNM 10, pp. 140–159, Birkhauser-Verlag, Basel, 1969.
- 3. J. B. DIAZ AND H. W. MCLAUGHLIN, Simultaneous approximation of a set of bounded real functions, *Math. Comp.* 23 (1969), 583-594.
- 4. J. B. DIAZ AND H. W. MCLAUGHLIN, Simultaneous Chebyshev approximation of a set of bounded complex-valued functions, J. Approx. Theory 2 (1969), 419-432.
- 5. N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators I," Interscience, New York, 1958.
- 6. C. B. DUNHAM, Simultaneous Chebyshev approximation of functions on an interval, Proc. Amer. Math. Soc. 18 (1967), 472–477.
- 7. A. S. B. HOLLAND, B. N. SAHNEY, AND J. TZIMBALARIO, On best simultaneous approximation, J. Approx. Theory 17 (1976), 187-188.
- 8. P. J. LAURENT AND PHAM-DINH-TUAN, Global approximation of a compact set by elements of a convex set in a normed space, *Numer. Math.* 15 (1970), 137-150.
- E. RÉMÈS, Sur la détermination des polynomes d'approximation de degré donné, Comm. Soc. Math. Kharkof Ser. 4 10 (1934), 41-63.
- 10. H. L. ROYDEN, "Real Analysis," 2nd ed., Macmillan, New York, 1968.
- 11. E. R. ROZEMA AND P. W. SMITH, Global approximation with bounded coefficients, J. Approx. Theory 16 (1976), 162-174.